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A novel three-axis gradient set and RF resonator for orthopedic
MRI has been designed and constructed. The set is openable and
may be wrapped around injured joints. The design methodology
used was the minimization of magnetic field spherical harmonics
by simulated annealing. Splitting of the longitudinal coil presents
the major design challenge to a fully openable gradient set and in
order to efficiently design such coils, we have developed a new fast
algorithm for determining the magnetic field spherical harmonics
generated by an arc of multiturn wire. The algorithm allows a
realistic impression of the effect of split longitudinal designs. A
prototype set was constructed based on the new designs and tested
in a 2-T clinical research system. The set generated 12 mT/m/A
with a linear region of 12 cm and a switching time of 100 us,
conforming closely with theoretical predictions. Preliminary im-
ages from the set are presented. © 1999 Academic Press

INTRODUCTION

method was used) with the modest overall length constraints
of 415 mm with an internal diameter of 250 mm, giving a
length-to-diameter ratio of approximately 1.7. An example o
one of the transverse sheet patterns is given in Fig. 1. Spec
care must be taken to ensure that the sheet patterns are s
metrical around the X and Y axes, with the insertion of two set
of hinges necessitating a trimming of the sheet pattern f
ensure this. A lack of cylindrical symmetry generates exagge
ated forces and torques when the gradient set is pulsed in t
magnet system.

The design of a split longitudinal gradient set is more diffi-
cult than the transverse coils and we now present our approa
in detail. Conventional Z gradient sets comprise a series
interconnected hoops with odd symmetry in current densit
(winding direction) about the isocenter. The scheme for th
return paths to enable an openable set to be constructed
shown in Fig. 2. In designing gradient sets it is often instructiv

The use of strong gradients with fast rise-times in MRP consider the spherical harmonics of the magnetic field th:

experiments is often desirable in order to reduce echo ti

mibe coils generate, as this is a sensitive measure of the pur

and to decrease off-resonance evolution. Local gradient cdif§earity) of the generated gradient field.

When modeling conventional Z gradient sets, odd orde

offer distinct advantages in this regart] @). For applications ‘ v s o
in which strong gradients with fast switching times are highigenal harmonics are the only significant terms in field expar
advantageous, such as diffusion tensor imagi)gahd fast Sion, due to the complete cylindrical symmetry of the coils an:
imaging sequences such as RARE and EPI B), we have thglr odd zonal symmetry. The harmonlgs gener.ated by tt
designed a strong, local gradient set for joint imaging. Orth&9ils may be calculated by first calculating the field on the
pedic imaging is further complicated by the limited joint mosurface of a sphere in the center of the coil set and the
tion by patients with injuries, often preventing the safe arfé@convolving into spatial harmonic tern, ¢). The harmon-
comfortable use of conventional local gradient coils. The gri&s may be more directly and efficiently evaluated from recur
dient set described here is designed to be wraparoundSife relationships initially presented for magnet desigi
openable, such that the RF coil and gradient set may be appké@: 11. In the case of a split coil system, however, the axia
around the joint under study, thus reducing the amount &turn paths prevent complete azimuthal inclusion and nece
suppleness required by the patient. sitate the derivation of a new algorithm for the efficient calcu
In this paper we detail the engineering design of the set al@iion of the complete harmonics generated by a multitur
present preliminary RARE knee images. An initial account 6&rc” conductor as shown in Fig. 3. Due to the fact that the
this work has been presented).( current carrying arcs have longitudinal return paths for “split
ting,” the arcs subtend an angle less than 180° and therefc
generate tesseral harmonic components. These components
undesirable and need to be included in the error function to t
The design of the transverse coils is comparatively straighinimized.
forward as their symmetry allows the splitting of the pattern Once the harmonics are derived from the coil structure, th
around the X or Y axis. A length constrained current densityesign proceeds by the minimization of harmonic errors usin

.
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FIG. 1. One half of a transverse wire pattern. Y grad pattern knee coil.
FIG. 3. Circular arc with rectangular cross-section. Indicated are a typice
source point (within the coil) measured in cylindrical polar coordinates and

simulated anneallng (SA)’ which we, and others, have ShoWBical field point measured in spherical polar coordinates.

to be an effective design methodology for gradient cdig«
14). For SA optimization to be effective, a large number of
iterations is required to locate the global minimum of the errday the structure. We now present the main steps involved in tl
space and descend to the lowest topology in the minimum. 8ew calculation method. In a volume through which no currer
that this process is not too time consuming, we have develogekses, the field at the poinis given by the expression

a computationally efficient algorithm for directly calculating

the spherical harmonics generated by a thick arc of current B,(r) = >, > r"Ma,,codmao)

carrying wires. This enabled the thousands of iterations nec- noom

essary to design the gradient set to be completed in less than .

2 h. In the Z-gradient design, the SA optimization proceeded +bysin(me) JPy(cos6), (1]

by randomly adjusting the positions of the coil bundles, th _ . . , .
mif spherical polar coordinate solution to Laplace’s equatiol

ere the polynomiaP,(cos 6), (order n, degreem) are
lutions to the associated Legendre equation. The coefficiel
andr"b,, are the magnitudes of the spherical harmoni

number of turns in each bundle, the width of each bundle, a
their radial extent. The error function for minimization wag'
simply a weighted sum-of-squares of the magnitude of zoncacf
and tesseral harmonics up to sixth order. Energy and/or pov(/e‘?"m
dissipation terms could also be included in the error function,

as we have previously demonstrat&l 12. 0.7 : : ,
OUTLINE OF THE SPHERICAL HARMONIC 0.6-
CALCULATION METHOD o
2 |
Consider then the multiturn arc of Fig. 3. The object is tcg 05 .
directly and rapidly compute the spherical harmonics generattéj N
N 0 ~. a(3,2) .
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FIG. 4. The trend of significant tesseral harmonic impurities with inclu-

FIG. 2. The openable Z-gradient concept. sion angle.
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FIG. 5. The error paths of a typical optimization run in two parts: (A) coarse first run with limited iterations and (B) final run after overlapping coilreslesce

terms. This equation is orthogonal for varyingindm values, (2n+ )(n—m) (2= (=
a property which allows the expressions for the coefficiapts am=1r" | J f B,(r)
andb,, to be obtained, for degrem = 0, 2ar(n + m)! y 9=0
ont1 (2n (= X Pym(cos0)sin 6 codme)dode,
a=1r"" yp J f B,(r)P,(cos0)sin 6dodd,
$=0 ~ 6=0 @n+(n—m! [27 [
byy=r1" 2+ )1 f J' B,(r)
b, =0, (2] m ' ¢=0 Y 9=0

for degreem =1, 2, 3, ..., X P,m(cos0)sin 6 sin(lm¢)dodd. [3]
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TABLE 1 (r', ¥, z"), allowing a circular arc to be easily described. The
Gz Coil Positions (One-Half Pattern) constant current density, directed around the arc gives
Axial midpoint Width of cail J(r") = Jey, [6]
Coil No. (mm) (mm) Number of turns

wheree, is the unit vector in the) direction. Relating both the
1 7.6 1.8 1 spherical and the cylindrical coordinate system to the san

2 63.2 3.6 2 ; ; :
3 1596 2056 17 Cartesian coordinate system, we may establish
e, =sin 0 sin(¢ — P)e
;hlljss tkk;i:vpr)]herical harmonics may be calculated when the field +cos 6 sin(¢ — e, + cod P — P)e,. [7]

The gradient coil is assumed to be composed of thick currentCombining Egs. [5}-[7], with the dimensions of the arc
carrying circular arc segments, producing a field of interest wder.con&deratlon, gives an expression for the magne
the z direction. From Maxwell’s equations, the magnetic inpotential

ductionB is given by A(r) = Ae + A, + Agey, 8]

B(r) = curlA(r), [41 where the components in thie 6, ¢ directions are given by

where the vector potentidl, in a medium with permeability,
is given by the generalized Biot—-Savart law MJOJW sz Jzz sinf sin(¢ — )

A

" A4m Ir —r’|
J(r’ = vYr=nYzZ=n
A(r) = 4i E ) v [5] v
77 v r=r| [N N L 2 cosf sin(¢ — )
A, = ———————r’'dzdr’'dy,

In this expression, the unprimed variables denote field points ' Am Ir—r'|
and primed variables source points (i.e., within the current-
carrying arcs). Field points are measured in spherical polar wdy [ V2 ra 2 cod ¢ — )

coordinates K, 6, &), corresponding to those in Eq. [1]. As = 4wf J f Wf’dz'df'ddh )
Source points’ are measured in cylindrical polar coordinates b=

r'dz' dr’dy,

Y=y v r'=rnvz=n

o

r'=rivYz=2

Gz 5% Knee Set Gy 5% Knee Set

-100
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100
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FIG. 6. The contour plot of the expected Z-gradient linearity in 5% contours, FIG. 7. The contour plot of the expected X-gradient linearity in 5% contours
that is, the first contour is 5% from the central value, the second 10%, etc. that is, the first contour is 5% from the central value, the second 10%, etc.
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FIG. 8. The prototype four-arc gradient set shown with the RF resonator closed (it is fully openable).
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FIG. 9. The measured field generated by the Z and Y gradients along the Z axis. The 5% linear regions correspond to a dsv of 12 cm.
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where we define

a=7 —r coso,

B =rsin6sin($ — ),

y=r"—rsinfcodd — ) =r" — 7,

m=rsinf codP — ). [10]
Applying Eg. [4] and considering the unit direction vectors for

the spherical polar coordinate system used allows an expre
sion for the field in the z direction to be written

cosf [ a9 . A,
B1) = sing (86 (sin 6A,) — a¢>)
1/9A, 9
_r(ad)_smear(m"’))' [11]

Thus we may calculate the coefficierds,, and b, by
substituting Egs. [9]-[11] into Egs. [2] and [3]. On substi-
tution it becomes possible to complete three of the resultin
five integrals in closed form, specifically thosednr’, z'.
With only two integrals remaining, and the dimensions o
the current carrying arcs merely variables in the method, tt
spherical harmonics may be evaluated quickly and acct
rately by numerical techniques. The details of completin
the integrals are extensive and the final results complicats
(although they only involve simple functions). Some of the
resultant expressions are derived in the Appendix and cor
plete details may be found il§). This algorithm is useful
in areas of NMR magnetostatic analysis and design oth
than gradient coils, such as magnet and shim coils, and
unrelated areas such as magnetohydrodynamics and m:q
netic “bottles.”

We have compared our method with test cases where ea
wire in the coil-arc is discretized, the field is calculated explic
itly using Biot—Savart summations, and the spherical harmol
ics are deconvolved from the field. Depending on the numb:
FIG.10. (A) Transverse RARE images of the knee of a patient. The S"C?\?/]:/(\)Ngredselrg g}emgargg:ﬁjrgecglstgf r[hr;]r?trhoedt;dbltel;[J\lgllglle2|t(;rr]r?a?l?/
thickness was 4 mm, the FOV 150 mm, the acquisition matrix 2586, the 3 - .
RARE factor 8, TRITE= 3000/20 ms, and image acquisition required 4 mi{15). These computational speed improvements are very in
of signal averaging. Note the “cyst-like” appearance of an interosseus ganglpartant for stochastic optimization methods.
in the images due to an acute injury to the anterior cruciate ligament of the The effect of the axial return paths in the Z gradient is, ir
pat_ie_nt, generating the ganglion at the_ femoral insertion point of the Iigamegtffectl to restrict the azimuthal inclusion angle of the
This is more apparent in the coronal images of (B). “ S . .

B,-active” arcs. So that we can choose a suitable maximu
return path width, we need to quantify the effect of varyinc
the inclusion angle with resultant homogeneity. We migh
reasonably expect that the terms generated by increasing |
Ir=r'|=(*+(r")?+ (2')*— 2rz'cos6 thickness of the return paths would be tesseral and should

— 2rr'sin 6 codd — ) /2 zero vyith a complete azimuthal coverage, increa_\sing as t
inclusion angle decreases. This is exactly what is observe
= Ja?+ B%+ y? in Fig. 4, where we note that the major contaminant i

with the distances between the field and source points
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as,, Wwith as, and as, also increasing but smaller thanpreemphasis andB, compensations were small<f%).
as, Switching times for all gradients were less than 3i1€) The

The optimization process proceeded by minimizing agradient set is torque-balanced, due to its symmetry of col
error function including all odd order zonal terms as well agtruction, and did not demonstrate any appreciate motion whe
as., 8s, andas, using a standard SA algorithm withit was pulsed after the removal of mounting fixtures. Splitting
adaptive step sizingl(l—13. Each SA run took abdl2 hto the set to make it openable clearly reduces the strength of t
complete and consisted of a coarse run with relatively larg&ucture, but providing the hinges and lock-down structure
step sizes for each of the parameters, followed by a fine rare durable, and the symmetry of the structure is retained, tl
with considerably smaller step sizes. The algorithm coapenable set handles the forces of gradient pulsing witho
lesced the 10-coil starting point to a 6-coil result. The errqgaroblems.
paths to a “frozen” state are shown in Fig. 5. Details of The RF resonator used in the experiments was a linear
one-half of the final coil configuration are given in Table 1polarized split high-pass design, fed so that the splitting did nc
1.8-mm annealed copper wire was laid into a fiberglagsterfere with the rungsi@, 17). A double-sided, slotted shield
substrate with 18-mm-wide return paths running axiallys used on the RF resonator which is used both as a transmit
The resultant significant contaminants for the final desigand as a receiver coil.
relative to the desired harmonic, over a 12-cm dsv wereFigures 10a and 10b show transverse and coronal RAF
Z3 (3e-3%), Z5(9e-2%), Z7(5.5e-2%), Z&’-y’) images of a knee joint acquired using the system. In each cz
(0.2%). the slice thickness was 4 mm, the FOV 150 mm, the acquisitic

Similarly for the Y-gradient coil, shown in part in Fig. 1,matrix 256X 256, the RARE factor 8, TR/TE 3000/20 ms,
over a 12-cm dsv, the only significant impurity harmoniand image acquisition required 4 min of signal averaging. Not
was approximately 0.9% of “X. Figures 6 and 7 show the “cyst-like” appearance of an interosseus ganglion in th
the predicted 5% contour lines of the longitudinal anomages due to an acute injury to the anterior cruciate ligame
transverse gradients, respectively, indicating that all showfélthe patient, generating the ganglion at the femoral insertic
be linear to at least 5% over the desired 12-cm centnadint of the ligament.
region.

CONCLUSION
RESULTS AND DISCUSSION

_ _ ) A high-strength local gradient set has been designed ai
A three-axis gradient set was constructed and interfacgggirycted for orthopedic MRI that allows unprecedente

to a 2-T OMT magnet system. The driving console was g:cess for patients with restricted joint mobility. The design o
Bruker Avance. The "4-arc” construction of the set shown ifyq |ongitudinal set is presented in detail and contains a ne
Fig. 8 consisted of an inner pair containing the Y gradienfiqrithm for directly calculating the spherical harmonics of ¢
and an outer pair containing the X and Z gradients. Theicy arc of current-carrying wire. The new calculation methoc

transverse gradients were constructed by laser Cutlifgs o hymper of applications in electromagnetics. The cor
copper sheets in a streamline pattern and the longitudingl gradient set performed as predicted by theory.
coil by laying wires in predetermined tracks. A smal

pick-up coil was used to assess the linearity of the gradi-
ents—Fig. 9 shows typical plots and indicates the useful
linear region to be 12—-14 cm. This was confirmed by phan-
tom images.

The complete electrical characteristics of the construct
gradient set were

APPENDIX

After substituting Eqgs. [9]-[11] into Egs. [2] and [3], the
épression for the harmonic coefficients may be expressed
or degreem = 0,

a. = (D (2n+1) pdo (EL _EQ@ _E® 4 g@)
no 471_ 477 no no no0 no
R(Q)/L(H) Sensitivity (mT/m/A) 5% Linear region (cm)
Py = 0, [A1]
X 0.48/120.0 1.05 12
Y 0.46/110.0 1.2 12
z 0.5/280.0 0.96 12 similarly for degreem = 1, 2, 3, ...,

o 2n+ 1)(n — m)! wJ,
The set was mounted 3 cm off-center in the x direction in a Ay =1 2r(n+m)!  4xm
2-T (OMT) MRI system (Bruker). A 300-V 50-amp Copley ) ,
amplifier was used to drive the set up to 6 G/cm (60 mT/m); all X (Ef— Efm— Efn+ ESD
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- 2n+1)(n—m)! wny 1 (2 (=
D=1 "V — @ — ; .
nm 27T(n + m)l 4’7T Enm_ 2J J [Sln((l) - !1[[1) X [C(r! 9! (l)i r2| llil! 22)
X(Fh-Fa-FO+Fm, A2 o
= C(r, 0, ¢; 1y, Y1, o) — C(r, 6, b; 1y, Yy, Z9)
where + 1, 0, ¢ Tay i, 2] Sin(e — )
W 2 T a ] P2 X [C(rv 01 (;by r21 dlZI 22) - C(r, 61 d)a rll ly[/2! ZZ)
Enm: f¢_0 J'e_o(:)e [Sln 0 fl//—dfl COid) - C(r, 0! ¢1 r21 ll’Z! Zl) + C(r, 6! (i)v rl! lpZ! Zl)]]
—WN(, 0, b g)di] X [c0S* 0P, (cosf)cogdme)]dodd,
X €0s 0P, (cos6)codme)dodd, 1 (2n (=
o ” a v E£13rr)1: zf J [Sm((;b - dfl) X [C(r! 6! qby r2! l1”1! ZZ)
Ein= f f P f sin(¢ — YIN(r, 0, ¢; ) di] emomee
$=0 7 6=0 $=v1 = C(r, 0, ¢; 1y, Py, o) — C(r, 6, b; 1y, Yy, Z9)
X CO0S*OP,(cos 0)cogme)dode, + C(r, 0, & 1y, Yy, 2,)] — Sin(b — )
I N A R _ X [C(r, 6, ¢; Ta s, Z,) — C(r, 6, &; 11, Y, Zo)
E(n?n—f f 06 f sin( = WN(r, 6, ¢; #)d] v he
$=0* 6=0 =i - C(I’, 9! (bi r21 lpZ! Zl) + C(I‘, 01 d)v rll lpZ! Zl)]]
X sin*0P,,(cos 6)cogme)dodde, X [sin?0P,(cosB)cogme)]dode,
2w T 9 2
Efh = o SN B g L[ [T . .
Loﬁoar[r meow PRI 0. G E(nn!=2mf J cosg[sin(m(¢ + y)) — sin(m(
$=0 v 6=0
in“0P .
X sin“6P,(cos0)cogme¢p)dodd [A3] ] X [IF, 0, b 1 0. 2,)
The constant§ ,,, appearing in Eq. [A2] have the same form —I(r, 0, d:ry, 0,2,) = I(r, 6, d: 15, 0, 7))
as [A3], with cos(nd) replaced by sinfig). Also we define
for convenience + 0(r, 6, ¢; 1y, 0, 2]
X [Sin?0P,(cos6)]dode. [A5]

N _ r2 2 r'dz'dr’
Lodw=| | Tarpae B ..
r=rnvz=z Likewise, the components,,, of the coefficientd,,,, may
be expressed by formulae involving integrals in only twc
Combining Egs. [A3] and [A4], we have five integrals tovariables, which may be rapidly and accurately evaluated usir
solve. After a considerable amount of algebi®)( we may Gauss—Legendre quadrature.

solve three of the five integrals in closed form. The solutions In Egs. [A5] above it has been convenient to define thi

for E,, (and therefore,,) are expressions
1 2m T . , )
Efm= me J cos[sin(m(p + ¢r,)) — sin(m(o C(r, 0, 51", ¢, 2)
$=0 Y 6=0

= aa?+ B2+ y2+ (B2+ (r')2 — n?)In|a
+ )] X [C(r, 0, $; 12 0,2)

[2 1 n2 1 A2 [(2 1 p2 1 A2
_C(r, 0, ¢: 1y, 0,2,) — C(r. 0. &: 15, 0,2,) + Ja? + B2+ vy + 2na injy + Ja® + BZ+ 7

55—

+ C(r, 6, ¢; ry, 0,2)] X [cosO sin 6P, . 1(COSO) a+y+ Jal+ It 2
- + 4nB arcta \ [A6]
+ (sin?0 — m cos’0) P,,(cos6)]dod o, B
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I(r, 0, ¢;r'y, 2) =C(r, 6, d; 1, , 2') —r cosfa’+ B>+ y* + 2(B* = n?)Infa + Ja®+ B? + y7

+2n(a —r cosO)In[y + |+ B*+ vy + 81 arctar(

a+y+ \fa2+Bz+ yz
B

N (B2—mH(a—rcosh) —anr’ —rcosh(a®+ (r')?

\/a2+ BZ+ ,yz

(B>+ (r')?=m3(B*— ny)

2na(B?—r cosfa)

\/az + B2+ yHa + \,/oz2 + B2+ y?

! ! ! ! /7
2Bz + yr' + (2 +r )\/a2+ B2+ v?

JaZ+ B2+ y¥Hy + \Ja?+ B2+ v?)

.
\m(y + \,a2+ B2+ yz)(a + \/a2+ B2+ yz)
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